Portal:Mathematics
The Mathematics Portal
Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Selected article
An example of a map projection: the area-preserving Mollweide projection of the earth. Image credit: NASA |
A map projection is any method used in cartography (mapmaking) to represent the dimensional surface of the earth or other bodies. The term "projection" here refers to any function defined on the earth's surface and with values on the plane, and not necessarily a geometric projection.
Flat maps could not exist without map projections, because a sphere cannot be laid flat over a plane without distortions. One can see this mathematically as a consequence of Gauss's Theorema Egregium. Flat maps can be more useful than globes in many situations: they are more compact and easier to store; they readily accommodate an enormous range of scales; they are viewed easily on computer displays; they can facilitate measuring properties of the terrain being mapped; they can show larger portions of the earth's surface at once; and they are cheaper to produce and transport. These useful traits of flat maps motivate the development of map projections.
View all selected articles | Read More... |
Selected image
The knight's tour is a mathematical chess problem in which the piece called the knight is to visit each square on an otherwise empty chess board exactly once, using only legal moves. It is a special case of the more general Hamiltonian path problem in graph theory. (A closely related non-Hamiltonian problem is that of the longest uncrossed knight's path.) The tour is called closed if the knight ends on a square from which it may legally move to its starting square (thereby forming an endless cycle), and open if not. The tour shown in this animation is open (see also a static image of the completed tour). On a standard 8 × 8 board there are 26,534,728,821,064 possible closed tours and 39,183,656,341,959,808 open tours (counting separately any tours that are equivalent by rotation, reflection, or reversing the direction of travel). Although the earliest known solutions to the knight's tour problem date back to the 9th century CE, the first general procedure for completing the knight's tour was Warnsdorff's rule, first described in 1823. The knight's tour was one of many chess puzzles solved by The Turk, a fake chess-playing machine exhibited as an automaton from 1770 to 1854, and exposed in the early 1820s as an elaborate hoax. True chess-playing automatons (i.e., computer programs) appeared in the 1950s, and by 1988 had become sufficiently advanced to win a match against a grandmaster; in 1997, Deep Blue famously became the first computer system to defeat a reigning world champion (Garry Kasparov) in a match under standard tournament time controls. Despite these advances, there is still debate as to whether chess will ever be "solved" as a computer problem (meaning an algorithm will be developed that can never lose a chess match). According to Zermelo's theorem, such an algorithm does exist.
Did you know…
- ...that it is possible to stack identical dominoes off the edge of a table to create an arbitrarily large overhang?
- ...that in graph theory, a pseudoforest can contain trees and pseudotrees, but cannot contain any butterflies, diamonds, handcuffs, or bicycles?
- ...that it is not possible to configure two mutually inscribed quadrilaterals in the Euclidean plane, but the Möbius–Kantor graph describes a solution in the complex projective plane?
- ...that the six permutations of the vector (1,2,3) form a hexagon in 3D space, the 24 permutations of (1,2,3,4) form a truncated octahedron in four dimensions, and both are examples of permutohedra?
- ...that the Rule 184 cellular automaton can simultaneously model the behavior of cars moving in traffic, the accumulation of particles on a surface, and particle-antiparticle annihilation reactions?
- ...that a cyclic cellular automaton is a system of simple mathematical rules that can generate complex patterns mixing random chaos, blocks of color, and spirals?
WikiProjects
The Mathematics WikiProject is the center for mathematics-related editing on Encyclopedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Things you can do
Subcategories
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
Topics in mathematics
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
| |||
Algebra | Analysis | Geometry and topology | Applied mathematics |
Index of mathematics articles
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
Related portals
Algebra | Analysis | Category theory |
Computer science |
Cryptography | Discrete mathematics |
Logic | Mathematics | Number theory |
Physics | Science | Set theory | Statistics |
In other Wikimedia projects